The generator matrix

 1  0  0  1  1  1  2  0  1  1  2  1  1  0  1  1  2  1  1  2  0  0  1  1  2  X  1  1  1  0  1 X+2 X+2  0  1  1  0  1  1  X  1  X X+2 X+2  1  1  1  1  1  1  1  1  1  1  0  1  1  X  1  1  1  1  1  1 X+2  1  1  1  1  X  X  X  1
 0  1  0  0  1  1  1  2  2  3  1  2  3  1  0  1  1  0  1  1  X  1  0  1  1  2  3  0  2  1  1  X  0 X+2  3 X+1  1  X  2  1  X  X  1  1 X+3 X+2  X  0 X+1  1 X+3  0 X+3 X+2  1 X+3 X+1  X X+2  3 X+2 X+3 X+3  2 X+2 X+1 X+3 X+2 X+2  0  0  X X+1
 0  0  1  1  2  3  1  1  0  2  3  1  3  0  0  2  0 X+1 X+3 X+3  1  X  X X+2 X+1  1 X+3  X X+1  X X+2  1  1  1 X+2  1  X  3  X  1  3  1  0  2  0 X+3  2  3  X  1  1  3 X+2  3  X  3  2  1 X+2  2  0 X+1  1 X+1  1  0  2  X X+2  1  1  0 X+2
 0  0  0  X  0  X  X  X  X  X  0  0  0  X X+2 X+2  2  X  X  0  0 X+2  2  2 X+2 X+2  2  0  2  X  0 X+2  2  X X+2  2  0  2 X+2  0  X  2  0  X  2  0  0 X+2  0  2 X+2  2 X+2 X+2  2  X X+2  X X+2  2  X  X  2  0  0  0 X+2 X+2  X  2 X+2  0 X+2

generates a code of length 73 over Z4[X]/(X^2+2,2X) who�s minimum homogenous weight is 68.

Homogenous weight enumerator: w(x)=1x^0+211x^68+128x^69+276x^70+204x^71+293x^72+184x^73+186x^74+100x^75+113x^76+68x^77+102x^78+32x^79+32x^80+12x^81+28x^82+32x^83+18x^84+8x^85+14x^86+2x^88+2x^90+2x^92

The gray image is a code over GF(2) with n=292, k=11 and d=136.
This code was found by Heurico 1.11 in 0.298 seconds.